

РУКОВОДСТВО ПО ОЦЕНИВАНИЮ ВЫПУСКНОГО ЭКЗАМЕНА ОСНОВНОЙ ШКОЛЫ ПО ФИЗИКЕ 13 ИЮНЯ 2019 г.

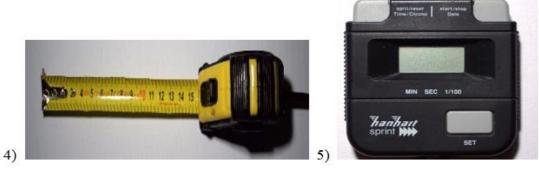
Оценка "5"	90–100%	68–75 баллов
Оценка "4"	75–89%	57–67 баллов
Оценка "3"	50-74%	38–56 баллов
Оценка "2"	20–49%	15–37 баллов
Оценка "1"	0–19%	0–14 баллов

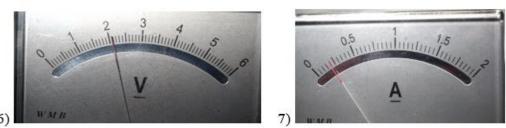
- При решении вычислительных задач ученик может использовать альтернативные способы, отличные от предложенного в руководстве по оцениванию. Если способ ученика по сути верен, то решение следует считать правильным.
- Если ученик, при решении задачи, сделал ошибку в одном из действий, но, используя этот ответ, продолжает корректно, то нужно считать последующие результаты верными.
- На титульном листе каждой экзаменационной работы следует отметить общую сумму баллов, экзаменационную оценку, годовую оценку и данные ученика. Все ячейки, предусмотренные для оценивания, нужно заполнить. В случае, если ученик ничего не ответил на вопрос или на целое задание, то в ячейке для оценивания ставится прочерк (–).

ОТВЕТЫ К ЗАДАНИЯМ

1. Найди из данного перечня физические явления, величины и физические тела. Внеси результаты в соответствующую таблицу. (Всего 6 баллов: за каждый правильный ответ 1 балл.)

Давление, инерция, вольтметр, паскаль, количество теплоты, лупа, метр, циркуль, трение, ареометр


Физическое	Физическая	Физическое тело	баллы	Номер
явление	величина			ячейки для
				оценивания


инерция	давление	лупа	Каждый ответ:	1
трение	количество	циркуль	1 балл	2
	теплоты			

Всего 6 баллов: за каждый верный ответ 1 балл.

2. Найди соответствие между измеряемой величиной и измерительным прибором. (5 баллов)

Физическая величина	Измерительный прибор	Номер ячейки для
		оценивания
температура	2	3
высота	4	4
сила	1	5
время	5	6
объем	3	7

Всего 5 баллов: за каждый правильный ответ 1 балл.

3.	Преобразуй	елинины из	вмерения. (4 балла)
J.	11pcoopus ym	одиницы и	moponin, (i owiiia,	,

3.1
$$43,2 \frac{KM}{4} = 12 \frac{M}{c}$$

$$3.2 50 000 \text{ MA} = 0.05 \text{ KA}$$

Возможные преобразования	Баллы	Номер ячейки для оценивания
$43.2 \frac{\text{KM}}{\text{q}} = \frac{43.2 \cdot 1000}{3600} = 12 \frac{\text{M}}{\text{c}}$	Правильный ответ дает 2 балла	8
$50\ 000\ \text{MA}\ = \frac{50000}{1000000}\ = \ 0.05\ \text{KA}$	Правильный ответ дает 2 балла	9

Всего 4 балла: каждый правильный ответ 2 балла.

4. Которое из следующих выражений верно? Обозначь каждый правильный ответ крестиком (X). $(6\ баллов)$

Каждый правильный ответ дает 1 балл, всего 6 баллов. Если ученик отметит больше, чем один отвеет, то весь ответ считается неправильным.

4.1 Удельная теплота плавления серебра равна 8	$88000 \frac{\text{Дж}}{\text{кг}}$	значит, что
--	-------------------------------------	-------------

для нагревания серебра необходимо затратить 88000 Дж энергии;		
для плавления серебра при температуре плавления необходимо затратить 88000 Дж энергии;		
при отвердевании 1 кг серебра при температуре плавления выделяется 88000 Дж	X	1

4.2 Оптическая сила линзы — 2,5 дптр значит, что

энергии.

... фокусное расстояние линзы равно 40 см;

... фокусное расстояние линзы равно 40 м;

фокусное расстояние линзы равно 5 см.	
4.3 В атоме урана ²³⁸ ₉₂ U	
92 электрона и 146 нейтронов;	X
92 протона и 238 электронов;	
92 нейтрона и 146 электрона.	
4.4 Смена времен года на Земле происходит потому, что	
ось Земли не перпендикулярна плоскости орбиты;	X
зимой Земля находится от Солнца дальше, чем летом;	
зимой день короче, чем летом.	
4.5 Преобразование формулы $p = \frac{F}{S}$ выполнено верно:	
$S = \frac{F}{p}$	X
$S = p \cdot F$	
$F=rac{S}{p}$	

4.6 Скорость тела увеличилась в 4 раза; кинетическая энергия тела

увеличится в 4 раза;	
увеличится в 16 раз;	X
увеличится в 8 раз.	

Номер задания	Баллы	Номер ячейки
		для
		оценивания
4.1–4.6	Каждый правильный ответ – 1 балл	10-15
	Если ученик отметит больше, чем один ответ,	
	то весь ответ считается неправильным.	
	D 66	
	Всего: 6 баллов	

- **5**. Тыква, масса которой 1,2 кг, упала с высоты 15 м на поверхность земли за 1,8 секунды. Сопротивление воздуха при расчетах не учитывать. (12 баллов)
- **a**) Вычисли силу тяжести, действующую на тыкву, а также работу и мощность тыквы при падении.

Дано	Решение	Баллы
m = 1,2 кг	F = mg	1 балл
$g = 9.8 \frac{H}{\kappa r}$	$g=9.8\frac{\mathrm{H}}{\mathrm{\kappa}\mathrm{\Gamma}}$ (из таблицы)	1балл
h = 15 м	$F = 1.2$ κ \cdot 9.8 $\frac{H}{\kappa \Gamma} \approx 12$ H	1 балл
t = 1.8 c	КГ	
Найти: F; A; N	A = Fh = mgh	1 балл
	$A = 12 \text{ H} \cdot 15 \text{ м} = 180 \text{ Дж}$	1 балл
	$N = \frac{A}{t} = \frac{mgh}{t}$	1 балл
	$N = \frac{180 \text{Дж}}{1,8c} = 100 \text{BT}$	1 балл

Ответ: Сила тяжести, действующая на тыкв 12 H; работа, совершенная тыквой 180 Дж и мощность 100 Вт

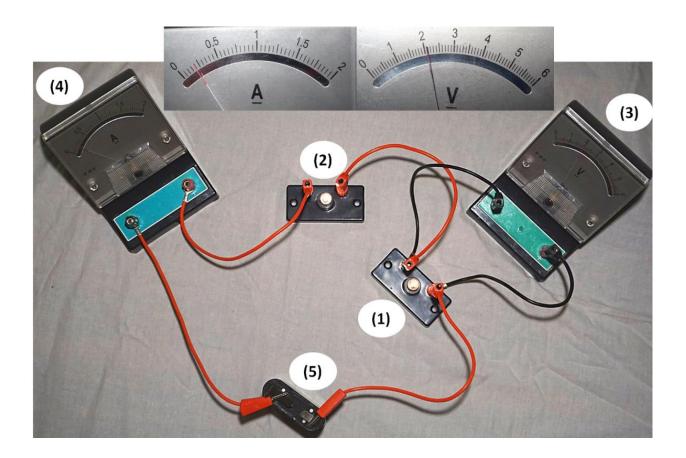
b) Вычисли потенциальную, кинетическую и полную энергию тыквы на поверхности земли.

Дано	Решения	Баллы
$h_1 = 0$ м	$E = E_p + E_k$	1 балл
m=1,2 кг	Полная энергия сохраняется неизменной	1балл
$g = 9.8 \frac{H}{\kappa \Gamma}$ Haŭmu: $E; E_k; E_p$	$E_p=0$ Дж	1 балл
= $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$	Е =180 Дж	1 балл
	$E_k = 180 \text{Дж}$	1 балл

Ответ: Потенциальная энергтыквы на поверхности земли 0 Дж, кинетическая энергия 180 Дж и полная энергия 180 Дж.

Ход решения, верный	Баллы и пояснения	Номер
ответ		ячейки для
		оценивания
F = mg	Формула силы тяжести (1 балл)	16 -17
$g = 9.8 \frac{H}{\kappa \Gamma}$ (из таблицы)	Нахождение правильных данных из таблицы	
	(1 балл)	
$F = 1.2 \text{kg} \cdot 9.8 \frac{\text{H}}{\text{kg}} \approx 12 \text{ H}$	Расчет силы тяжести (1 балл)	18
	Формула для вычисления работы вместе с	19
A = Fh = mgh	учетом формулы для силы тяжести	
	(1 балл)	
$A = 12 \mathrm{H} \cdot 15 \mathrm{m} = 180 \mathrm{Дж}$	Расчеты (1 балл)	20
$N = \frac{A}{t} = \frac{mgh}{t}$	Формула мощности с учетом формулы для	21
$\frac{1}{t} - \frac{1}{t} - \frac{1}{t}$	работы (1 балл)	
$N = \frac{180 \text{Дж}}{1,8c} = 100 \text{Вт}$	Расчеты (1 балл)	22
$E = E_p + E_k = A$	Закон сохранения механической энергии.	23
	(1 балл)	
Полная энергия остается неизменной	(1 балл)	24
$E_p = 0$ Дж	Расчеты (1 балл)	25

Е =180 Дж	Энергия - это способность тела совершать	26
	работу. (1 балл)	
$E_k = 180$ Дж	Расчеты (1 балл)	27


6. В алюминиевый сосуд массой 1,5 кг при температуре 20° C, влили 2 литра воды той же температуры и поставили это на электрическую плиту. Рассчитай количество теплоты, которое нужно для нагревания сосуда, наполненного водой, до температуры 50° C . (12 баллов)

Дано	Решение	Баллы
$m_{Al}=1$,5 кг	$V_v = 2 \pi = 0.002 \text{m}^3$	1балл
$V_v = 2 \ \pi = 0.002 \ \text{m}^3$	$ ho_{v}=1000rac{\kappa\Gamma}{{ m M}^{3}}$ (из таблицы)	1балл
$t_1 = 20^{\circ} \text{ C}$	$\rho_v = \frac{m_v}{V_v}$	1 балл
$t_2 = 50^{\circ} \mathrm{C}$	$m_v = ho_v V_v$	1 балл
$\rho_v = 1000 \frac{\text{kg}}{\text{m}^3}$	$Q_{v} = c_{v} m_{v} (t_{2} - t_{1})$ $v\tilde{o}i \ Q_{v} = c_{v} \rho_{v} V_{v} (t_{2} - t_{1})$	1 балл
$c_{Al} = 880 \frac{\text{Дж}}{\text{кr}^{\circ}\text{C}}$	νοι	
$c_{v} = 4200 \frac{\text{Дж}}{\text{vg}^{\circ}\text{C}}$	$c_v = 4200 rac{ extstyle au_{ extstyle au}}{ extstyle au_{ extstyle au}^{ extstyle au}} ag{ extstyle (из таблицы)}$	1 балл
найти: Q	$Q_{v} = 4200 \frac{\ddot{\text{Дж}}}{\kappa \Gamma^{\circ} \text{C}} \cdot 2 \kappa \Gamma \cdot (50^{\circ} \text{C} - 20^{\circ} \text{C}) = 252000 \text{Дж}$	1 балл
	$c_{Al} = 880 \frac{\text{Дж}}{\text{кг}^{\circ} \text{C}}$ (из таблицы)	1 балл
	$Q_{Al} = c_{Al} m_{Al} (t_2 - t_1)$ $Q_{Al} = 880 \frac{\text{Jm}}{\text{K} \Gamma^{\circ} \text{C}} \cdot 1,5 \text{ K} \Gamma \cdot 30^{\circ} \text{ C} =$	1 балл
	39600 Дж	1 балл
	$Q = Q_v + Q_{Al}$	1 балл
	Q = 252000 Дж + 39600 Дж = 291600 Дж	1 балл

Ответ: Для нагревания сосуда, наполненного водой до 50° С требуется 291600 Дж энергии.

Ход решения, верный ответ	Баллы и пояснения	Номер ячейки для
		оценивания
$V_v = 2 \ \pi = 0.002 \ \text{m}^3$	Преобразование единиц	28
	измерения (1 балл)	
$ ho_v = 1000 rac{\kappa \Gamma}{{ m M}^3}$ (из таблицы)	Нахождение плотности воды из	29
	таблицы (1 балл)	
$\rho_v = \frac{m_v}{V_v}$	Формула плотности для воды	30
v _v	(1 балл)	
$m_v = \rho_v V_v$	Преобразование формулы	31
	(1 балл)	
$Q_v = c_v m_v (t_2 - t_1)$	Формула для расчета количества	32
$v\tilde{o}i \ Q_v = c_v \rho_v V_v (t_2 - t_1)$	теплоты воды (1 балл)	
$c_v = 4200 \frac{\text{Дж}}{\text{кr}^{\circ}\text{C}}$ из таблицы)	Нахождение удельной	33
	теплоемкости воды из таблицы	
	(1 балл)	
$Q_v = 4200 \frac{\text{Дж}}{\text{кг}^{\circ}\text{C}} \cdot 2\text{кг} \cdot (50^{\circ}\text{C} - 20^{\circ}\text{C}) = 252000 \text{Дж}$	Расчеты (1 балл)	34
$Q_{Al} = c_{Al} m_{Al} (t_2 - t_1)$	Формула для расчета количества	35
	теплоты алюминия (1 балл)	
$c_{Al} = 880 \frac{\text{Дж}}{\text{кг}^{\circ}\text{C}}$ (из таблицы)	Нахождение удельной	36
	теплоемкости алюминия из	
	таблицы (1 балл)	
$Q_{Al} = 880 \frac{\text{Дж}}{\text{кг}^{\circ}\text{C}} \cdot 1,5 \text{ кг} \cdot 30^{\circ} \text{ C} =$	Расчеты (1 балл)	37
39600 Дж		
$Q = Q_v + Q_{Al}$	Формула для расчета полного	38
	количества теплоты (1 балл)	
Q = 252000 Дж + 39600 Дж = 291600 Дж	Расчеты (1 балл)	39

7. На фотографии изображена электрическая цепь, где соединены две одинаковые лампы нагревания. Сопротивление проводов при расчетах не учитывать! (17 баллов)

1) Назови части цепи, обозначенные на фотографии цифрами (3), (4) и (5). (3 балла)

Решение	Баллы
(3) вольтметр	1 балл
(4) амперметр	1 балл
(5) источник тока	1 балл

2) Нарисуй схему электрической цепи, используя условные обозначения. (5 баллов)

Решение	баллы
	1 балл за правильное обозначение каждого элемента

3) Вычисли сопротивление лампы накаливания (1).(6 баллов)

Дано	Решение	Баллы
Правильно снятое		1 балл
показание вольтметра $U = 2.1B$ Правильно снятое		1 балл
показание амперметра		
I = 0.2A	$I = I_1$ ученик понимает, что амперметр показывает силу тока в лампе нагревания (1).	1 балл
	$I_1 = \frac{U_1}{R_1}$	1 балл
Найти R_1	$R_1 = \frac{U_1}{I_1}$	1 балл
	$R_1 = \frac{2.1B}{0.2A} = 10.5 \text{ Om} \approx 11 \text{ Om}$	1 балл
Ответ: Сопротивление лампы накаливания равно 110м		

4) Расчитай электрическую мощность лампы накаливания (2). (3 балла)

Дано	Решение	Баллы
U = 2,1V $I = 0,2A$	$N_2 = I_2 U_2$	1 балл
Найти <i>N</i> ₂	$U = U_1 = U_2$, т.к. лампы накаливания одинаковые	1 балл
	$N_2 = 2.1 \text{B} \cdot 0.2 \text{A} = 0.42 \text{BT}$	1 балл
Ответ: Электрическая мощность лампы накаливания (2) равна 0,42 Вт		

Ход решения, правильный	Баллы и пояснения	Номер ячейки
ответ		для оценивания
(3) вольтметр	По рисунку правильно определены	40-42
(4) амперметр	элементы электрической цепи.	
	(3 балла)	
(5) источник тока		
	Каждый правильно изображенный и размещенный элемент электрической цепи (вольтметр, амперметр, источник тока, лампы накаливания) дает 1 балл. (5 баллов)	43- 47
U = 2.1B	Правильно снятое показание	48
	вольтметра (1 балл)	
I = 0.2A	Правильно снятое показание	49
,	амперметра (1 балл)	
$I = I_1$	Понимание того, что амперметр	50
	показывает силу тока в лампе	
	накаливания.(1 балл)	
$I_1 = \frac{U_1}{R_1}$	Закон Ома (1 балл)	51
$R_1 = \frac{U_1}{I_1}$	Преобразование формулы (1 балл)	52
$R_1 = \frac{2.1 \text{B}}{0.2 A} \approx 110 \text{M}$ $N_2 = I_2 U_2$	Расчеты (1 балл)	53
$N_2 = I_2 U_2$	Формула для расчета мощности	54
	(1 балл)	
$U = U_1 = U_2$	Поскольку лампы накаливания	55
	одинаковые, то падение напряжения	
	на лампах одинаковое. (1 балл)	

$N_2 = 2.1B \cdot 0.2A = 0.42BT$	Расчеты. (1 балл)	56

8. Расчитай КПД мотора автомобиля, если расход бензина составляет 5,6 кг за час и мощность автомобиля 25 кВт. Удельная теплота сгорания бензина равна $48 \, \frac{\text{МДж}}{\text{кг}} \, (9 \, 6 \, \text{даллов})$

Дано	Решение	Баллы
$r = 48 \frac{\text{M} \text{Дж}}{\text{K} \Gamma} = 48000000 \frac{\text{Дж}}{\text{K} \Gamma}$		1 балл
$r = 4.8 \cdot 10^7 \frac{\text{Дж}}{\text{KG}}$	Преобразование единиц измерения	1балл
N = 25 kBT = 25000 BT $N = 2.5 \cdot 10^4 \text{ BT}$		1балл
t = 3600 c		
t = 1 ч = 3,6·10 ³ с $m = 5$, 6 кг	4	1 балл
m=3,0 Ki	$\eta = \frac{A}{Q}$	1 σωπ
	$A = N \cdot t$	1 балл
	$Q = r \cdot m$	1 балл
	$\eta = \frac{N \cdot t}{r \cdot m}$	1 балл
	$\eta = \frac{N \cdot t}{r \cdot m} = \frac{2.5 \cdot 10^4 \cdot 3.6 \cdot 10^3}{4.8 \cdot 10^7 \cdot 5.6} = 0,3348 \approx 0,33$ КПД в процентах $\eta = 33 \%$	2 балла

Примечание: При расчетах можно не учитывать десятые доли.

Ответ: КПД автомобиля равно 33 %.

Ход решения, правильный	Баллы и пояснения	Номер ячейки для
ответ		оценивания
$r = 48 \frac{\text{M} \text{Дж}}{\text{K} \text{\Gamma}} = 4.8 \cdot 10^7 \frac{\text{Дж}}{\text{K} \text{\Gamma}}$	Преобразование единиц измерения (1 балл)	57
$N = 25 \text{ kBt} = 2,5 \cdot 10^4 \text{ Bt}$	Преобразование единиц измерения (1 балл)	58
$t = 1 \text{ q} = 3.6 \cdot 10^3 \text{ c}$	Преобразование единиц измерения (1 балл)	59
$\eta = \frac{A}{Q}$	Формула для расчета КПД (1 балл)	60

$A = N \cdot t$	Формула для расчета работы	61
	(1 балл)	
$Q = r \cdot m$	Формула для расчета количества теплоты (1 балл)	62
$\eta = \frac{N \cdot t}{r \cdot m}$	1 балл	63
$ \eta = \frac{N \cdot t}{r \cdot m} = \frac{2,5 \cdot 10^4 \cdot 3,6 \cdot 10^3}{4,8 \cdot 10^7 \cdot 5,6} = 0,3348 \approx 0,333 $	Расчеты (1 балл) При расчетах можно не учитывать десятые доли.	64
η = 33 %	КПД в процентах (1 балл)	65

9. На рисунке изображены источник света и предмет. Дополни рисунок так, чтобы возможно было объяснить возникновение полной тени. Отметь на рисунке предмет, источник света, экран и полную тень. *(4 балла)*

Решение	Баллы
Решение а)	4 балла
тень	
Источник предмет света	

	экран	
Решение b)		
тень		
предмет	Источник	
•	света	
экран		
Предлагается 2 способа решения.		
Оба варианта дают по 4 ба.	пла.	

Ход решения, правильный	Баллы и пояснения	Номер ячейки для
ответ		оценивания
Рисунок отражающий	4 балла	66
оьразование поной тени и все		
элементы: предмет, источник		
света, полная тень, экран.		
Возможны два варианта		
решения а) и b), за которые		
возможно получить полное		
количество баллов.		